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Chapter 1

Introduction

This report describes the code of team Bembelbots developed for participation in the Standard

Platform League at RoboCup 2019. It gives an overview of the current status of their code with
focus on the changes for 2019.

Team

The RoboCup team Bembelbots was founded in 2009 at Goethe University Frankfurt (Main), Ger-
many, as a group fully organized by students. As there is no robotics group at the university, the
team should help students to increase their experience in robotics as well as programming skills in
addition to the theoretical orientation of the computer science degree program of the university.

Figure 1.1: Team Bembelbots at the RoboCup German Open 2019 in Magdeburg, Germany.
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Currently 11 students are working on the implementation of the framework for playing soccer.
Teamleader is Jens Siegl, a student of computer science at Goethe-University. The team owns five
Nao v6 and six Nao H25 v5 robots. Since 2012 the team Bembelbots organizes the FIAS BembelCup
in line with the ”Night of Science”, a public event showing different aspects of science, technology,
engineering and mathematic study paths offered at the Goethe University in Frankfurt. This small
tournament of three to four competing teams is one of the final tests for the RoboCup, as it is
temporally located nearby.

Goals

Due to the environmental changes to ball, playing field turf, and lighting, our landmark and ball
detection was faulty in the last years, which affected our self-localization and made team play nearly
impossible. Since we mostly mastered these challenges in preparation for RoboCup 2018 we are
now focusing on how to play with team strategy such as preventing fighting for the ball in our own
team. Additionally, due to missing robot detection, the team suffered severely from time penalties
for illegal robot-robot interactions. Development of anti pushing measurements was another main
priority.

Report Structure

The report will first outline the fundamental architecture of the Bembelbots framework. Sub-
sequently, the cognition process from camera images to decision making, motions and motion-
scheduling, whistle detection, approaches to challenges posed in 2019, and finally debugging appli-
cations will be described.
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Chapter 2

JRLSoccer System Architecture

As the main goal of the team is to teach students in the field of robotics, as well as working on a
complex software architecture, we focused right from the beginning on building a full framework
from scratch rather than using existing architectures. Our framework is split up into four main
parts: A backend implementation, providing data for the frontend and controlling communication
to the robot’s hardware. The frontend represents the robot’s software functionality. Backend and
frontend communicate using shared memory segments, in order to minimize latency and overhead.
A standalone monitor provides system information on robot health, as well an interface to configure
game setting via UDP. For debugging purposes we use several tools written in Python combined in
our bembelDbug debugging suite. Figure 2.1 illustrates the overall structure of our framework.

2.1 Backend

The backend encapsulates all interaction with the robot hardware, such as reading sensors or setting
actuators. This allowed us to switch to the new LoLa interface on Nao V6 with relative ease, as
we were able to write a new LoLa-backend while running the same frontend code with very few
modifications (mainly related to the different camera modules) on both Nao V5 and V6 robots. In
addition to the LoLa and NaoQi backends, there is also a dummy backend which allows running
the frontend for testing and debugging on regular Linux systems.
Communication between backend and frontend is done through three shared memory (SHM) seg-
ments, each passing data only in one direction: Sensor data is passed from backend to frontend, and
actuator data is fed back from the frontend to the backend. On V5 robots there is an additional
SHM segment for text-to-speech output through NaoQi.
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Figure 2.1: Overview of the JRLSoccer Framework.
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Figure 2.2: Overview of the main parts of the JSfrontend architecture with its main threads.
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2.2 Frontend

The frontend is where all of our game logic is implemented. Being implemented as a standalone
program, this allows us to test the frontend separately from the robot hardware, which is very
helpful to reduce the possibility of memory leaks. The software management is organized using Git
so that the whole framework can be tested using a Jenkins 1 continuous integration process after
every code change.
Our framework is organized as a blackboard architecture, giving every module the possibility to
share data, access information of other modules, and increase debuggability. The data in each
blackboard can be viewed, analyzed, and manipulated at runtime using our debug tool BembelDbug,
see section 6.

The frontend is split up in two major parts. The cognition thread is synced with the image
gathering process, calculating the localization, world beliefs, and the desired behavior decisions.
The motion thread is limited by the sensor acquisition frequency and computes the movements of
the robot (see section 4 for more details). Network communication with other robots as well as the
whistle detection (see section 5.1) are also placed in separate threads. These will be started and
stopped on demand. An overview of our frontend structure can be found in Figure 2.2.

As basically all of the computationally intensive tasks (e.i. vision processing) are done sequen-
tially within the cognition thread, the current architecture cannot utilize the full compute power
of the Nao V6’s quad-core CPU. For this reason we plan to move to a new architecture which will
allow parallel execution of tasks in 2020.

1Jenkins open source automation server: www.jenkins.io
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Chapter 3

Cognition

3.1 Object Detection Pipeline

Our robot’s vision is based on the HTWK Leipzig vision pipeline release of 2018 1. This provides
us with field color, bounds detection, as well as lines, and regions of interest for possible ball
candidates. Our contribution is the refinement of line information to extract line crossing type and
location as additional information for our localization, and classifiers for ball, robots, and penalty
marks.

3.1.1 Crossing Detection

We use a line based approach to detect T or L shaped crossings. X shaped crossings are currently
not in use. Line segments, received from the vision pipeline, are compared to each other to detect
intersections at a 90 degrees angle when projected from the camera image into the robot’s coordinate
system. Those are considered possible candidates for T or L crossings.

L - Crossing

Detected Line

Elongated Line

T - Crossing

Detected Line

Elongated Line

Figure 3.1: Crossings Detection Process
Crossings detection by elongating lines and checking distances to crossings intersections (circle). On the left both

line segments got elongated to find an L-Crossing, as the line-endings are both in bounds with respect to the
crossing center. On the right a T-Crossing is detected by elongating lines, as one line ending is out-of-bounds it

cannot be labeled L-Crossing.

1NaoHTWK’s HTWKVision GitHub repository: github.com/NaoHTWK/HTWKVision
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The candidate line segments are extended as far as possible without passing a line-color (white) to
field-color(green) gradient, in order to compare the position of lines intersection to the length of
the line. If for one intersecting line the distance from point of intersection to the end of the line is
grated than a given threshold, e.g. half of the line width, this crossing is considered a T crossing.
Else it is considered an L crossing. For a depiction of the process, see Figure 3.1
For the robot’s self-localization it is important to also estimate the crossing’s orientation. Each
crossing is marked with a fixed angle [2]. For L crossings the direction of the ’right’ crossing’s line is
used, for T crossings the direction of the ’t-base’ line is used, to determine the angle of the crossing
to the robot. This further distinguishes crossings of the same type, see Figure 3.2.

Figure 3.2: Crossings Orientation
A sketch of the crossings directions for one half of the playingfield. The red lines mark the orientation of the

crossing.

3.1.2 Object Classifiers

The ball detection makes use of the regions of interest (ROIs) provided by the HTWK vision
pipeline. Each ROI marks the image region of a possible ball candidate. We check the ROIs by
passing them through convolutional neural network classifiers. There are two classifiers with the
same architecture, one for ball classification and one for robot(feet) and penalty mark classification.
As all of theses categories are frequently captured by the ROIs, we apply both classifiers on each
ROI. The input to our classifier is a 12× 12 grayscale image patch. The classifier’s architecture is
depicted in Figure 3.3. For deployment on the robot we use an SSE optimized version of the caffe
framework, provided by HTWK.
Our training data is mostly synthetic with real-world data added during training for fine-tuning.
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We outline the process for data-generation in section 3.1.3. The real-world images have either been
taken of releases from other teams, such as SPQR, HULKs, and HTWK, which at the time only
included annotations for ball, or from our own data gathering, where we increased performance
of our classifier in an iterative fashion using it for semi automatic labeling of the image patches
recorded by the robot to decrease human annotation effort.
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Figure 3.3: Bembelbots Classifier

3.1.3 Generation Of Synthetic Data

As of the introduction of the new black and white ball in 2016 our team switched from a purely
model based ball detection approach to object classification using machine learning. By that time
only little data was publicly available. Thus we started early on using synthetic data for training
purposes. This data is available at plenty and comes with included pixel-wise annotation.

Figure 3.4: Example of synthetic data with semantic ground truth annotation.
The figure shows a single example of a simulated playing situation (left) together with its automatically generated

pixel wise ground truth annotation (right).

Data generation is performed by replicating the RoboCup environment, as given by the official rule
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book, in an Unreal Engine 4 2 scene. The choice for this particular rendering engine is due to its
trade-off of being a real-time renderer, which is needed to be able to create new data fast, and at the
same time providing one of the highest photo-realism standards by incorporating physically-based-
rendering (PBR), keeping the domain gap from synthetic to real data as small as possible. The 3D
models are self-made with exception to the Nao model which is provided by SoftbankRobotics. The
scene’s lighting setup is oriented on typical ceiling mounted lights as common on most RoboCup
venues. The simulation allows to create SPL game scenes by a stochastic process: All robots and
the ball are placed at random positions on the playingfield, where one robot has a observing camera
attached. At the same time the environment, i.e. lighting and playingfield color are sampled from a
range of known possible colors and intensities. This aims to diversify the generated images such that
the classifier finally trained on this data has highest generalization capabilities. For an extensive
explanation of the generation process, please see [5]. From the pixel-wise annotation, we cut image
patches mimicking the ROIs of our detection pipeline. Each year we refine the image generator.
Recently we added sprayed lines of sampleable intensity as well as a new grass shader. Also natural
lighting conditions, i.e. sun light, has been added, see Figure 3.5.

Figure 3.5: UERoboCup Visual Extention
Example of the new playingfield grass shader with sprayed lines of multiple opacities, and sun lighting.

3.2 Worldmodel Creation

The data extracted by the vision module as well as data received from teammates has to be processed
and merged into a model of the world of the robot, named Worldmodel. It contains positions of all
objects relevant to the robot, such as ball, teammates, obstacles, teamball and itself. All behavior-
decisions are based on these informations, which are updated, estimated and calculated with the
following modules:

3.2.1 Teamcommunication

Each robot broadcasts its estimated pose, last known ball location and additional data, via UDP
in the standard SPL message format (see Figure 3.6).

2Unreal Engine 4 www.unrealengine.com
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Figure 3.6: Creation of the worldmodel from own pose position process and the by receiving broad-
casts from teammates.

3.2.2 Self-Localization

To estimate the robot’s pose, visually perceived landmarks and odometry are fused in a particle
filter, see [3], a Monte-Carlo localization (MCL) algorithm. One of the main reasons for the par-
ticle filter is the possibility of solving global localization problems, as well as the integration of all
observed landmarks without further processing. The filter represents the belief of the robot’s pose
with a set of samples (particles). Each particle is a possible pose of the robot. In the initial state,
after a penalty, and after manual placement, the particle filter is initialized by fixed pre-determined
distributions, giving priors of the robot’s pose according to the situation.
In our localization approach we use a combination of motion controls, and sensor data from gyro-
scopes for the motion model update. We weight the particles by matching the visually perceived
lines and crossings-interceptions with a map of known field landmarks. In each measurement update
the filter compares landmarks by their distance and angle, and matches them using the maximum
likelihood method. We chose the systematic resampling algorithm [11], which yields a reliable lo-
calization result for low numbers of particles (less then 100). To determine the robot’s pose from
the particle distribution we calculate the particle closest to the mean of all particles. This offers the
best compromise between accuracy and runtime performance, compared to choosing the particle
with the highest weight or applying a cluster algorithm. To evaluate the filter and the different
methods of resampling and position determination, we use a ceiling mounted camera, tracking LEDs
attached to Nao’s head. This provides us with ground truth information on the robot’s movement
on the field. An evaluation of a path over the playingfield is illustrated in Figure 3.7.
The particle filter only works properly if the particles cover the true robot position. If all particles
lost track, e.g. because of a series of false detected landmarks, most of the time the particle filter
does not find the track again and the robot is de-localized. To prevent this situation we developed
a readjustment method for the particles this year: If we see a significant landmark (e.g the center
circle) or combinations of those, so that there are only a few positions possible for the robot on the
field, these are used as position hypotheses. We then choose the hypothesis that is closest to the
particles and sample a low percentage of the particles at this position.
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Figure 3.7: Evaluation of the particle filter
The black line represents the ground truth position of the robot. The yellow to red line shows the estimated

position, where the color decodes the estimated orientation of the robot. The circles represent the distribution of
the particles: Dark grey circles display the mean distance of the particles from the center, light grey circles indicate

the particle position with the highest distance.

3.2.3 Obstacle Detection

We consider other robots and goal posts as obstacles that should be avoided by the robot’s be-
havior, specifically by our reactive walk. These obstacles are detected by our vision module and
by monitoring the movements of our arms while setting the stiffness to a low value, interpreting
changes in joint values as collision with an obstacle. Both measurements are integrated into the
Worldmodel and stored for 3 seconds. New measurements are merged with already known ones
when they are close to one-another.

3.2.4 Ball Processing And Teamball

We apply an exponential filter to the estimated ball position from the vision module, due to the
ball’s position estimation being subject to small variations, as the ball detection is currently not
able to pin point the ball center. Further, ball related informations are calculated, such as which
robot is nearest to ball, teamball and if a seen ball matches the team ball. The teamball is used
when multiple robots see a ball. It is estimated by clustering the balls seen by all robots of the team,
choosing the cluster with the biggest size and calculating a mean position of the balls, weighted by
a confidence factor e−αdi , where di is the distance of the corresponding robot to the ball seen by it
and α a parameter.
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In case a robot is assigned goalkeeper in a penalty shoot-out, a ball motion filter is applied. It
predicts the ball movements based on linear regression, to calculate if the ball will hit the goal-line
left or right of the goalkeeper.

3.3 Behavior

As of recent years, we still use CABSL, the standalone C-implementation of XABSL published by
B-Human. CABSL is an implementation of hierarchical finite state machines, that allows the robot
to make long term and short term decisions. Since our self-localization got more reliable over the
last years, and based on a new module that processes and stores all ball-related information, see
3.2.4, we have developed a dynamic team strategy, which should prevent robots from fighting for
the ball within the own team. Also this year, we have been working on a reactive walking behavior,
allowing our players to dynamically avoid obstacles, which is implemented outside of CABSL. This
reduces CABSL to more high-level-behavior.

3.3.1 Team Strategy

We dynamically decide who should be the striking robot based on the ball distance, while in previous
years the robots were following their pre-configured role assignments, which often lead to fighting
for ball in the own team. The striking robot dribbles the ball into the direction of the opponent
goal. If a robot is not assigned the striking robot, it still follows predefined actions:

• The goalkeeper mainly stands in his goal, with the exception of attacking the ball when it is
close by.

• The defender positions itself between the goal center and the ball if the ball is inside the own
team’s half of the field, else it positions itself closely to the front of its teams penalty-area.

• The other offensive robots follow the striking robot to block the goal and take over the
dribbling in case the striking robot falls or loses the ball.

3.3.2 Reactive Walk

In order to prevent our robots from walking into obstacles (other robots, goal posts, etc.) we
implemented a reactive walking behavior. It leads to a more dynamic walking path and reduces
robot collisions and therefore pushing or foul penalties. Objects present in our Worldmodel (robots,
ball, and goal posts) get assigned an either positive or negative charge. In our model these charges
apply an attracting or repelling force onto the navigating robot, see Figure 3.8. The strength of the
force is determined by the objects charge and distance. Closer objects will therefore have a bigger
impact on the robot’s walking behavior than objects further away. The robot’s walk target has a
positive charge assigned and therefore attracts the robot. The resultant force vector is calculated
by adding up all forces applied to the robot, determining the robot’s walking direction. A filter is
applied to smooth rapid direction changes.
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Figure 3.8: Forces determining the robots walking direction
The left robot is attracted by the ball (yellow force vector) and repelled by the other robot on the field (red force

vector). Combining these forces results in the walking direction of the robot.
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Chapter 4

Motion Control

4.1 Bodycontrol

The new body control and motion framework, bodycontrol, see [6], has a modular structure, in
which all motions are separate modules, some of which run exclusively, such as whole body motions
(i.e. stand up moves), and some run in parallel, such as the walk and the head looking towards
a position. Apart from motions, the bodycontrol includes additional functionalities: Sensor data
acquisition, center of mass (CoM) calculations, camera transformations, inertial measurement unit
(IMU) filters, and setting LEDs for debugging purposes. Which all follow the same modular struc-
ture. Figure 4.1 shows the structure of the framework.
For each motion thread cycle, all active modules modify the data on a blackboard upon being called
in sequence by a control shell (runner), which also handles activation and deactivation of modules as
well as the communication with the backend and the cognition/behavior thread. Testing individual
modules is done by faking data on the blackboard and running a single module. Alternatively the
bodycontrol may run independently from the rest of the framework. In this dummy frontend the
whole cognition and behavior thread is replaced with a network thread that listens to our bembelD-
bug network protocol, and can pass arbitrary commands to the same thread-safe command queue
the behavior would use from inside the JRLSoccer framework. The modules are not interdependent
to one-other for compilation, they only depend on the blackboard that needs to have the correct
fields and has no dependencies on it’s own. Logical dependencies are declared on registration of the
modules in a single file, where each module gets a human readable ID, and optional dependencies
and priorities are declared, determining the execution sequence. Compared to the standard depen-
dency injection design pattern this design omits the need for defining interfaces. It also differs from
the classical blackboard approach, as its control shell has no knowledge of the data the modules
may modify. This puts more responsibility for module dependencies on the programmer, which is
mitigated by the blackboard and the inclusion file, giving an complete overview over all modules,
data and dependencies in a single file.
For the composition of motions we provide some utility functions. Inverse kinematics of the lower
body, stabilizing functions using the arms or legs, and interpolation functions can be used to
program the motions in a conceptual space closer to how we would describe them as humans. Ad-
ditionally most motions have different phases or sections for which we adopt the well known finite
state machine concept. These concepts allow us to define states interpolating between keyframes
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Figure 4.1: Bodycontrol and Motion Framework.

that are calculated with inverse kinematics. On motions such as a stand up move, we can check
if a part of the motion succeeded and repeat parts as necessary. Through the return values of the
states, a motion may signal if it is currently stable or in a critical section and should thus not be
interrupted.

4.2 Motions

We use the walk modules of Nao-Team HTWK. The stand-up-motions are static motions.

4.2.1 Kick

With the fast movements and one-foot stand needed when kicking a ball, naturally come stability
issues, which are further increased by external forces from other robots. We use a mostly pre-
computed kick motion to minimize the computation needed when performing the kick: key-frames
are defined based on center of mass and angular momentum calculations to achieve static and
dynamic stability. Forceful contact can then be balanced by counter movements in ankles and
shoulders, using prior calculated per key-frame balancing details (see [7]).
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Chapter 5

Whistle Detection

5.1 Base Whistle Detection

Our whistle detection uses the alsa library to access microphones on the Nao robot. A Fast Fourier
transformation is run on the acquired audio data using the library fftw3

1. Once a whistle candidate
is detected, in the frequency domain we check whether the frequency was above 2000 Hz for most of
the signal. As the detection itself needs a lot of computational resources, the detection is enabled
only in special game situations, such as the set state, and is disabled in the playing state.
Last year we published the whistle detection on our Bembelbots Github page 2. The release also
includes a small debugger to test the whistle detection on wav files.

5.2 Directional Whistle Detection

The directional whistle detection was developed to localize the referee after blowing the whistle.
Necessary for its successful application is a well-functioning whistle detection. The moment when
our whistle detection recognizes a whistle, the directional whistle detection determines the sound
source location by calculating the time offset between the four microphones of the Nao robot. To
achieve this, cross correlation was implemented and used on the first 60 ms of the detected whistle.
To determine the microphone which is closest to the sound source, the sound volume of each
microphone is evaluated. This allows us to limit the location to a single quadrant. Then the angle
to the sound source is calculated by using cross correlation of only the two nearest microphones, to
prevent distortion of the results.
Given the results of multiple robots, the determined angles are triangulated and the center of the
resulting triangle is calculated as the estimated sound source position. We chose to use multiple
robots for the localization instead of only using a single robot. In fact the usage of a single robot
is possible, but needs a different method for localization, which is slower and more inaccurate.

1Fast fourier transformation, www.fftw.org/
2Bembelbots whistle detection: github.com/Bembelbots/NaoWhistleDetection
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Chapter 6

Debugger

To communicate with our framework we designed our own debug protocol based on json and raw
data. It uses a client-server architecture where the client is the debugger and the server is the
Nao. Only one client is allowed to make changes to the Nao at a given time. Thus in order to
make changes, the client has to first connect with the server. Once the connection is terminated
through disconnect or timeout another client can make a new connection. We wanted to make the
protocol as simple as possible. To accomplish this it was decided to use a subscriber system, where
the connected client subscribes to the required data. The sending and receiving of data is done
over UDP except when receiving images, which is done over TCP. Previously we interfaced with
our debug protocol through a Python 2 and Qt4 program called NaoDebug. After some time we
realized that the user interface was inadequate as module experts in the team required information
from multiple sections concurrently. Implementing this functionality proved challenging and after
some analysis we decided to start fresh. Thus a new program named BembelDbug based on Python
3 and Qt5 came into fruition. The idea is to have each tool, previously named section, in its
own window allowing the user to decide how to place the tools for an optimal overview based on
debugging requirements. This would also led to each tool being self contained. The advantage
being that each module expert can write their own tool, extending the debugger without any cross
dependencies. This new system has proved to be useful and has decreased setup time before games,
whilst improving productivity during development on the Nao.
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